19 research outputs found

    The importance of left ventricular function for long-term outcome after primary percutaneous coronary intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the present study we sought to determine the long-term prognostic value of left ventricular ejection fraction (LVEF), assessed by planar radionuclide ventriculography (PRV), after ST-elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (PPCI).</p> <p>Methods</p> <p>In total 925 patients underwent PRV for LVEF assessment after PPCI for myocardial infarction before discharge from the hospital. PRV was performed with a standard dose of 500 Mbq of <sup>99m</sup>Tc-pertechnetate. Average follow-up time was 2.5 years.</p> <p>Results</p> <p>Mean (± SD) age was 60 ± 12 years. Mean (± SD) LVEF was 45.7 ± 12.2 %. 1 year survival was 97.3 % and 3 year survival was 94.2 %. Killip class, multi vessel-disease, previous cardiovascular events, peak creatin kinase and its MB fraction, age and LVEF proved to be univariate predictors of mortality. When entered in a forward conditional Cox regression model age and LVEF were independent predictors of 1 and 3 year mortality.</p> <p>Conclusion</p> <p>LVEF assessed by PRV is a powerful independent predictor of long term mortality after PPCI for STEMI.</p

    An investigation of basis set effects in the characterization of electron-atom scattering resonances using the dilated electron propagator method

    No full text
    The effects of basis set variations on resonance attributes are investigated using systematically augmented basis sets by correlating the resulting changes in resonance energy and width with the alterations induced in the radial probability density profile of the resonant orbital. Applications to P-2 Be- and P-2 Mg- Shape resonances reveal that basis sets capable of describing both electron density accumulation near the target nucleus to facilitate resonance formation and sufficiently large electron density away from the target nucleus to provide for its decay are necessary for effective characterization of these resonances. A comparison of radial probability density profiles from the bivariational self-consistent field, the second-order, the diagonal two particle-one hole Tamm-Dancoff approximation and quasiparticle decouplings reveals that relaxation effects dominate in resonance formation
    corecore